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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность темы исследования 

Тритий – изотоп водорода, природного и техногенного происхождения. 

Этот радионуклид является бета-излучателем низкой энергии (средняя 

энергия 5,7 кэВ) с периодом радиоактивного распада 12,3 года. Круговорот 

трития в окружающей среде связан с круговоротом воды, круговоротом 

органических веществ во время таких процессов, как фотосинтез или 

биосинтез молекул, из которых состоят клетки у животных. В живых 

организмах тритий присутствует либо в форме тканевой и межтканевой воды 

(в основном тритий-протиевой  воды – HTO), либо в форме органически 

связанного трития (ОСТ) в белках, нуклеиновых кислотах, липидах и 

сахарах.  

Тритий может представлять опасность для здоровья, если попадает в 

организм с питьевой водой или пищей, а также при вдыхании или попадании 

через кожу в больших количествах. Потенциальная токсичность трития 

зависит от его клеточной локализации и удержания в организме. Существует 

неопределенность, связанная с потенциальным воздействием трития на 

здоровье, а также в количественной оценке и понимании механизмов 

воздействия различных молекулярных соединений с тритием на 

биологические структуры. Измеренные экспериментально для трития 

значения относительной биологической эффективности (ОБЭ) имеют 

широкий диапазон от 0,4 до 8.  

Реалистичная оценка риска после поступления трития в организм 

должна быть основана на достаточно точной дозиметрии. По настоящее 

время в экспериментах с тритием используются упрощенные методы расчета, 

которые не учитывают короткий радиус пробега бета-частиц трития и 

неоднородности распределения в ткани при низкой и средней активности 

радионуклидов. Более точная дозиметрия должна учитывать биокинетику 

поступающих соединений в организм и размер выбранной биологической 

цели.  
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Низкоэнергетическое бета-излучение трития полностью локализуется 

внутри клеток млекопитающих и имеет высокий  гено- и цитотоксический 

потенциал, поэтому исследование молекулярных и клеточных эффектов 

воздействия трития имеет важное теоретическое и прикладное значение. 

Степень разработанности темы 

Исследованию воздействия трития на биологические объекты 

посвящено много экспериментальных работ, как in vivo, так и in vitro. 

Большинство исследований характеризуется использованием высоких 

удельных активностей и, соответственно, мощностей доз, которые 

необходимы для получения острой летальности, индукции канцерогенеза, а 

также тератогенных, репродуктивных и цитогенетических эффектов. В 

результате полученные дозы от трития на несколько порядков превышают 

оценку средней эффективной дозы для населения и персонала. 

Одной из проблем в экспериментах является вопрос дозиметрии 

соединений с тритием в различных типах клеток. Существует потребность в 

разработке методики дозиметрии трития, учитывающей короткий пробег 

бета-частиц трития, размеры клеточных структур и селективное включение в 

различные структуры клетки в зависимости от его химической формы. 

Эксперименты показывают, что в зависимости от включения атома 

трития в молекулы воды или органические молекулярные структуры, 

радиационные биологические эффекты будут существенно различаться. 

Несмотря на обширные исследования биологического действия трития, есть 

неопределенность в количественной оценке риска слабого и/или длительного 

радиационного воздействия. Работ по исследованию эффектов от низких 

уровней мощностей доз трития с HTO и ОСТ относительно немного в связи 

со слабым биологическим откликом. Использование высокочувствительного 

иммуноцитохимического анализа количества фокусов белков репарации ДНК 

позволяет оценить риск от низких уровней мощностей доз трития при его 

включении в различные органические и неорганические соединения.  
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Цели и задачи  

Целью работы является изучение закономерностей изменений 

количества фокусов белков репарации ДНК в клетках млекопитающих при 

поступлении соединений трития в различных молекулярных формах с низкой 

активностью. 

Для достижения указанной цели были поставлены следующие задачи: 

1. Разработать методики оценки и программные средства расчета 

поглощенных доз в клетках в зависимости от размера клеточных 

структур и распределения источников излучения. 

2. Провести сравнительное исследование изменений количества 

фокусов белков репарации ДНК (γH2AX, 53BP1 и pATM) в 

зависимости от поглощенной дозы ионизирующего излучения в 

ядрах мезенхимальных стромальных клеток (МСК) человека, 

инкубированных с  
3
Н-тимидином или НТО с объемной активностью 

от 100 до 400 МБк/л в течение 24 ч. 

3. Провести сравнительные исследования образования фокусов белков 

репарации ДНК (γН2АХ) в фибробластах легкого человека (линия 

MRC-5) при инкубации в течение 24 ч в среде, содержащей  
3
Н-

тимидин или меченные 
3
Н-аминокислоты (глицин, аланин, пролин) с 

объемными радиоактивностями от 100 до 400 МБк/л. 

4. Исследовать изменения количества фокусов белков репарации 

(γН2АХ) в клетках селезенки и частоты полихроматофильных 

эритроцитов (ПХЭ) костного мозга с микроядрами у крыс Wistar, 

получавших в течение 28 суток с питьевой водой 
3
H-тимидин или 

HTO с объемной активностью 200 кБк/л. 

Научная новизна 

Впервые предложено использовать методику расчета дозиметрии 

трития в клеточных структурах с комплексным учетом энергетического 

спектра трития и процесса восстановления радиационных клеточных 

повреждений. 

Впервые установлена зависимость «доза-эффект» для фокусов белков 

репарации ДНК в клетках при инкубации с соединениями трития, с учетом 
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закономерностей процесса репарации клеточных эффектов и 

экспериментальных измерений радиоактивности в суспензиях клеток, ядер и 

ДНК.  

Впервые при инкубации клеток в среде с одинаковой активностью 

соединений трития (НТО и 
3
Н-тимидина) при анализе фокусов систем 

репарации (γH2AX, 53BP1 и pATM) установлены различия в процессах 

репарации ДР ДНК при воздействии НТО и 
3
Н-тимидина, что обусловлено 

существенным различием поглощенных доз ядрами клеток.  

Впервые явно установлена зависимость количества фокусов белков 

репарации ДНК от степени включения тритированных соединений в ядро 

клетки, ДНК и белки хроматина. Низкий эффект от воздействия трития в 

неорганической форме  и значительно более высокий эффект от воздействия 

ОСТ при одинаковой измеренной радиоактивности в среде, объясняется, в 

отличие от HTO, дифференцированной степенью включения различных 

видов ОСТ в молекулы ядра и цитоплазмы клеток. 

Впервые в экспериментах на крысах при пероральном потреблении 

отдельных соединений с тритием с малой радиоактивностью проведены 

исследования фокусов белков репарации ДНК в ядрах клеток селезенки, а 

также ПХЭ костного мозга с микроядрами. Отмечены очень низкие значения 

поглощенных доз в тканях органов, что приводит к необходимости оценки 

доз для ядер отдельных клеток тканей органов и от единичных распадов 

трития в клеточных ядрах. 

Теоретическая и практическая значимость работы 

Изучение последствий излучения трития в средних и малых дозах 

является важным исследованием, которое позволит оценить степень 

опасности для здоровья человека низкоэнергетического электронного 

излучения радионуклидов непосредственно в клетках тканей. 

Количественное определение фокусов белков репарации ДНК при 

воздействии разных соединений с тритием с низкой радиоактивностью 

может быть использовано для оценки опасности облучения в малых дозах. 

Применение адекватной и рациональной методики дозиметрии изотопов в 

ядрах клеток млекопитающих важно для дальнейшего изучения воздействия 
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радионуклидов, особенно в случаях хронического облучения. Полученные 

зависимости количества фокусов белков репарации от поглощенных ядрами 

доз трития и их интерпретации необходимо учитывать в процессе 

совершенствования методов радиационной биодозиметрии. 

Результаты диссертации внедрены в научно-исследовательскую 

деятельность отдела экспериментальной радиобиологии и радиационной 

медицины ФГБУ ГНЦ ФМБЦ им. А.И. Бурназяна ФМБА России. 

Методология и методы исследования 

Экспериментальная работа была выполнена на базе Федерального 

государственного бюджетного учреждения «Государственный научный 

центр Российской Федерации - Федеральный медицинский биофизический 

центр им. А.И. Бурназяна» Федерального медико-биологического агентства 

России.  

Основой диссертационной работы являются собственные, 

отечественные и зарубежные исследования, а также современные разработки 

в области молекулярной и клеточной радиобиологии. Сравнительная оценка 

степени повреждений ДНК была проведена с использованием 

иммуноцитохимического анализа фокусов белков репарации ДНК. 

При проведении исследований были использованы: 

 методы культивирования МСК и фибробластов легкого человека 

(линия MRC-5); 

 методы исследования эффектов перорального поступления 

тритированных соединений в тканях крыс Wistar; 

 радиометрия и дозиметрия соединений трития в культуре клеток и 

тканях организма; 

 иммуноцитохимический  анализ  фокусов  белков  репарации  ДНК; 

 методы анализа ПХЭ костного мозга с микроядрами; 

 статистические методы обработки полученных данных. 

Положения, выносимые на защиту: 

1. Количественные закономерности биологических эффектов от 

поглощенных доз ядрами клеток следует определять с учетом 
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клеточных размеров, спектрального распределения бета-излучения 

трития и функциональной аппроксимации восстановления клеточных 

структур от повреждений. 

2. Различия в изменениях количества фокусов белков репарации ДНК 

при воздействии различных соединений трития с одинаковой 

объемной активностью обусловлены различиями в значениях 

поглощенных доз в клеточных ядрах и кинетики процессов репарации 

ДНК.  

3. Количество фокусов белков репарации ДНК при воздействии бета-

распада трития связано со степенью концентрации органических и 

неорганических соединений трития в клеточном ядре. 

4. При пероральном потреблении млекопитающими питьевой воды с 

активностью трития, близкой к активностям на атомных 

предприятиях, наблюдаются слабые генотоксические эффекты. 

Публикации по теме диссертации 

По теме диссертации опубликовано 8 печатных работ, в том числе 4 

статьи в рецензируемых журналах в ВАК и международных базах 

цитирования, 4 тезиса докладов. 

Материалы диссертации были представлены на следующих научно-

практических конференциях: Юбилейной международной научно-

практической конференции «ФГБУ ГНЦ ФМБЦ им. А.И.Бурназяна ФМБА 

России: 75 лет на страже здоровья людей» (Москва, 2021); VIII Съезде по 

радиационным исследованиям (Москва, 2021); IV Национальном конгрессе с 

международным участием по экологии человека, гигиене и медицине 

окружающей среды «Сысинские чтения-24», посвященного 145-летию со дня 

рождения А.Н. Сысина (Москва, 2024); Международной конференции 

«Актуальные проблемы радиационной биологии. Модификация 

радиационноиндуцированных эффектов» (Дубна, 2024). 

Личный вклад автора  

Личный вклад автора заключался в планировании, проведении и 

обработке экспериментов, разработке методов и программных средств 

численного моделирования, анализе и интерпретации полученных данных, 
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написании статей и тезисов. Большая часть представленных 

экспериментальных результатов и теоретических расчетов выполнена 

автором лично.  

Соответствие диссертации паспорту специальности 

Результаты диссертационной работы соответствуют паспорту 

специальности 1.5.1. Радиобиология, в частности к пунктам 1; 3; 5. 

Структура и объем диссертации 

Диссертационная работа изложена на 127 страницах машинописного 

текста и состоит из введения, четырех глав, заключения, выводов, списка 

литературы, включающего 149 источников (из них 130 на иностранном 

языке). Работа иллюстрирована 32 рисунками,  14 таблиц, 1 приложение. 

 

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 

Глава 1. Обзор литературы  

В главе 1 представлен обзор литературы по исследованиям воздействия 

соединений трития на клеточном уровне, в котором освещены следующие 

вопросы: 1) экспериментальные исследования на клетках in vitro, 

включающие их гибель и задержку пролиферации, мутагенные эффекты, 

хромосомные аберрации, индукцию микроядер и фокусов белков-маркеров 

ДР ДНК; 2) экспериментальные исследования in vivo, включающие основные 

результаты ранних и современных исследований воздействия трития на 

животных, а также биокинетики и метаболизма трития в их организме. Из 

анализа литературы следует значительная зависимость клеточных эффектов 

от химической формы соединений с тритием и  необходимость исследований 

клеточных реакций на воздействие небольших мощностей доз трития на 

клеточном уровне. 

Глава 2. Дозиметрия соединений с тритием 

Во всех предыдущих экспериментальных исследованиях с тритием в 

целях установления зависимости «доза-эффект» в клетках используется 
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стандартная упрощенная формула, основанная на гипотезе однородности 

распределения трития в клетках. Формула содержит также предположение, 

что концентрацию энергии трития в веществе можно количественно 

корректно определить через среднюю энергию его излучения. В случае 

неоднородного распределения в среде, клетке и клеточном ядре стандартная 

формула уже некорректна. Кроме того, при распаде трития, энергия 

распределяется между бета-частицей и антинейтрино случайным образом, 

следовательно, соответствующее электронное излучение имеет спектральное 

распределение, определяющее вероятность (частоту) излучения электрона 

определенной энергии. Поэтому в диссертации предлагается использовать 

методику дозиметрии трития, учитывающую спектральный энергетический 

состав при распаде трития и апробированные полуаналитические методы 

расчета доли энергии электронов, поглощаемой в целевой области. В 

соответствии с общепринятыми представлениями, большинство 

генотоксических биологических эффектов от радиации обусловлено 

нарушениями структуры ДНК ядра клетки, поэтому в качестве целевого 

объема выбирается объем клеточного ядра.  

Предлагаемая методика оценки расчета поглощенных доз ядрами 

клеток использует:  

 метод определения поглощенной дозы (S-значений) в области 

мишени (ядре клетки) от моноэнергетического электрона в области 

источника излучения (единичный распад трития в ядре и/или 

цитоплазме клетки); 

 предположение о сферической симметрии областей мишени и 

источника излучения; 

 спектральное распределение бета-излучения трития, которое 

определяет вероятность (частоту) излучения электрона определенной 

энергии от 0 до 18 кэВ; 

 способ определения числа распадов трития в ядре и цитоплазме 

клетки. 

На основе проведенного анализа различных методов расчета доз от 

трития на клеточном уровне, принято решение об использовании 
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апробированного метода Комитета по дозам внутреннего медицинского 

облучения Общества ядерной медицины (Medical Internal Radiation Dose – 

MIRD) для расчета средней поглощенной дозы в области мишени на единицу 

активности (S-значений).  

В главе представлены необходимые для расчетов формулы, 

учитывающие изменение энергии электронов с расстоянием, а также доли 

энергии излучаемой из области источника и поглощаемой в целевой области. 

При этом, для случая трития предложено использовать аналитические 

формулы для определения длины пути и глубины проникновения электронов 

низких энергий. Собственные расчеты S-значений моноэнергетических 

электронов (1-18 кэВ) сравниваются с представленными в литературе 

расчетами, как для случая сферической симметрии, так и для случая 

эллипсоидальной формы ядра и клетки.  

Далее представлены собственные расчеты S-значений для трития с 

учетом вероятностей появления моноэнергетических электронов и в 

зависимости от размеров ядер и клеток. Собственные расчеты для трития 

согласуются с точностью до 5% с S-значениями, полученных в ряде работ по 

моделированию распространения электронов в веществе с использованием 

современных численных методов Монте-Карло.  

Полная поглощенная доза ядром клетки получается умножением 

соответствующего S-значения на число распадов трития в ядре и цитоплазме 

клетки. При этом следует принимать во внимание клеточный отклик на 

радиацию, определяемый функцией восстановления клеточного 

повреждения. В случае исследования количества разрывов ДНК и их белков 

репарации, в качестве функции восстановления клеточного отклика от 

радиации предлагается использовать аппроксимацию литературных 

экспериментальных данных двумя экспоненциальными зависимостями, 

отражающими быстрый и медленный  процесс репарации ДР ДНК. 

 Количество распадов трития в ядре и клетке можно определить, 

проводя  экспериментальные измерения удельной радиоактивности трития в 

клетках, ядрах и ДНК. Предполагается, что HTO быстро распределяется по 

всему объему культуральной среды и клеткам, вследствие этого, его 
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активность постоянна в течение клеточного цикла. В зависимости от вида, 

ОСТ последовательно встраивается в ядра, цитоплазму и ДНК в различных 

фазах клеточного цикла.  

При хроническом воздействии радиации большая часть клеточных 

повреждений успевает восстановиться к концу периода облучения и 

измеряемый клеточный эффект будет только от распадов трития, 

произошедших в конце периода инкубации с соединениями трития. В связи с 

этим, вводится понятие «остаточной» дозы, т. е. дозы, поглощенной ядром 

клетки с учетом числа распадов трития в ядре и цитоплазме клетки в 

зависимости от функции репарации ДР ДНК от времени. 

В конце главы отмечены особенности кинетики и метаболизма 

соединений с тритием в организме животных и представлены необходимые 

для оценки дозиметрии удельные активности HTO и ОСТ в различных 

тканях крыс в зависимости от радиоактивности трития в потребляемой 

крысами питьевой воде. 

Таким образом, изложенную в главе методику оценки поглощенных 

доз в клетках в зависимости от размера клеточных структур и распределения 

источников излучения можно применить к определению зависимостей «доза-

эффект» при изучении закономерностей изменений количества фокусов 

белков репарации ДР ДНК в клетках млекопитающих при воздействии HTO 

и ОСТ даже при единичных распадах трития в клетках.  

Глава 3. Материалы и методы экспериментов 

3.1 Эксперименты in vitro 

В экспериментах при инкубации с соединениями трития 

использовались культуры клеток МСК костного мозга человека и 

фибробластов легкого человека линии MRC-5. 

В экспериментах с  
3
H-тимидином и HTO использовалась первичная 

культура МСК костного мозга человека 5–6 пассажа, полученную из 

коллекции ООО «БиолоТ» (Россия).  

В экспериментах с  
3
H-тимидином и 

3
H-аминокислотами (

3
Н-аланин,

 

3
Н-глицин, 

3
Н-пролин) использовалась клеточная линия MRC-5 – хорошо 
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охарактеризованные нормальные фибробласты человека, одобренные для 

радиобиологических исследований.  

Последовательность экспериментов состояла из нескольких этапов:  

1) Подготовка клеток к иммуноцитохимическим исследованиям, в ходе 

которой происходит облучение культуры клеток в растворе с заданной 

объемной активностью трития в форме HTO/ОСТ в условиях CO2-

инкубатора. Конечная объемная радиоактивность составила 100, 200, 300 и 

400 МБк/л. 

1.1 Предварительно подготовленную культуру клеток – 0,5 мл 

клеточной суспензии – высаживают на покровные стекла, помещенные в 

чашки Петри диаметром 35 мм из расчета 4∙10
4
 клеток на 1 покровное стекло.  

1.2  Чашки оставляют на 15 минут для адгезии клеток, и затем 

добавляют по 1,5 мл питательной среды в каждую чашку. 

1.3 Клетки инкубируются в течение 24 часов в условиях CO2-

инкубатора при 37 °С и концентрации CO2 5 %. 

1.4 Чашки извлекаются из инкубатора, после чего из них сливается 

питательная среда и добавляется свежая среда, содержащая HTO/ОСТ c 

необходимой объемной активностью трития.  

1.5 Клетки инкубируются условиях CO2-инкубатора при 37 °С и 

концентрации CO2 5 %, в течение необходимого интервала времени. 

1.6 Клетки извлекаются из инкубатора, питательная среда с 

HTO/ОСТ сливается, при этом клетки в виде монослоя остаются 

прикрепленными на покровном стекле. Покровные стекла извлекаются для 

дальнейших исследований. 

2) На втором этапе происходит химическая обработка и 

иммуноцитохимическое окрашивание клеток с целью подсчета количества 

фокусов γH2AX, 53BP1 и АТМ  с помощью люминесцентного микроскопа, 

оснащенного видеокамерой высокого разрешения. Анализировалось не менее 

300 клеток на точку.  

С целью измерения удельной радиоактивности трития (в клетках, ядрах 

и ДНК), МСК инкубировали в полной культуральной среде с добавлением 

3
H-тимидина и HTO с объемной радиоактивностью 79,3 МБк/л в течение 24 
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ч. Измерение удельной активности трития в суспензиях клеток и ядер, а 

также в растворах ДНК были произведены на жидкостном 

сцинтилляционном анализаторе Tri-Carb 3180 TR/SL (PerkinElmer). 

Статистический и математический анализ полученных данных 

проводился с использованием пакета статистических программ Statistica 8.0 

(StatSoft) и Microsoft Excel. Результаты исследований представлены как 

среднее арифметическое результатов трех независимых экспериментов ± 

стандартная ошибка средней. 

3.2 Эксперименты in vivo 

В исследовании использованы 18 крыс-самцов Wistar, имеющих массу 

тела 371±26 г. Животных разделили на 3 группы: «Контроль», «HTO» и «
3
Н-

тимидин», по 6 особей в каждой. Крыс из разных групп размещали в 

отдельных помещениях и содержали в поликарбонатных клетках. Крысы 

группы «Контроль» получали дистиллированную воду, животные двух 

других групп потребляли дистиллированную воду с соединениями трития 

(HTO или 
3
H-тимидин) с объемной активностью 200±11 кБк/л. Объем 

потребляемой жидкости фиксировали ежедневно. При аутопсии крыс на 28 

сутки эксперимента от каждой крысы брали костный мозг и селезенку. 

Определяли уровень повреждений ДНК (фокусы γН2АХ) в клетках 

селезенки крыс, получавших в течение 28 суток с питьем HTO или 

3
H-тимидин с объемной активностью 200 кБк/л. Спленоциты выделяли путём 

механической гомогенизации селезенки. Далее проводилось 

иммуноцитохимическое окрашивание. Подсчет количества фокусов 

проводился вручную. Анализировалось не менее 500 клеток на крысу (не 

менее 3 тысяч клеток на экспериментальную группу). 

Для подсчета микроядер были подготовлены образцы клеток костного 

мозга. При подготовке препаратов проводили трепанационную биопсию, 

мазки фиксировали и окрашивали ацетоорсеином-светлым зеленым. 

Использовался микроскоп Olympus СH30 при общем увеличении ×1000 с 

масляной иммерсией. Анализировали по 1000 клеток костного мозга от 

каждого животного. 



15 
 

Результаты статистически обрабатывали в программах Microsoft Excel 

и Statistica 10.0 (StatSoft, Inc.). Определяли среднее значение показателей в 

группах, ошибку среднего и стандартное отклонение. Межгрупповые 

сравнения проводили с использованием теста Манна-Уитни и по критерию 

χ
2
. Отличия считали статистически значимыми при P≤0,05. 

Глава 4. Результаты и обсуждение 

4.1 Результаты радиобиологических экспериментов in vitro 

Результаты исследований с МСК 

Радиоактивность трития измерялась в МСК человека, инкубированных 

с 
3
Н-тимидином или HTO. Исходные измерения радиоактивности были 

пересчитаны для одиночных клеток, ядер и ДНК и также представлены в 

таблице 1 как среднее число распадов в мин. При расчете радиоактивности на 

одно ДНК учитывается масса ДНК в 6,0 пикограмм. 

Таблица 1 – Результаты измерения радиоактивности и анализа включения 
3
H-

тимидина и HTO в клетках, ядрах и ДНК в МСК человека при удельной 

активности в среде 79,3 МБк/л  

Соединение 
Радиоактивность  

1 млн клеток, Бк 

Радиоактивность 

1 млн ядер, Бк 

Радиоактивность 

1 мкг ДНК, Бк 

Контроль 0 0 0 

НТО 198±26 32±5 6±2 

3
Н-тимидин 17267±1960 5816±741 930±135 

Соединение 
Число распадов  

на клетку в мин 

Число распадов  

на ядро в мин 

Число распадов  

на ДНК в мин 

НТО 0,0119±0,0016 0,0019±0,0003 0,0022±0,0007 

3
Н-тимидин 1,04±0,12 0,35±0,04 0,33±0,05 

Измерения радиоактивности и оценка числа распадов трития 

показывают высокую скорость включения 
3
H-тимидина по отношению к 

HTO в ДНК клеток. Скорость распада трития на ядро и ДНК у 
3
H-тимидина 
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почти одинакова, что подтверждает теоретические представления, что 

фактически весь 
3
H-тимидин в ядре включается в состав ДНК. 

Измерение радиоактивности непосредственно для ядер и клеток 

позволяет  определить число распадов трития (
3
H) в единицу времени. В 

экспериментах по анализу количества фокусов представляет интерес 

поглощенная доза трития (
3
H) за 24 часа и ее оценка, учитывающая эффект 

репарации ДР ДНК («остаточная» поглощенная доза). Расчет количества 

распадов трития отдельно в ядре и цитоплазме проводился в предположении, 

что  функция активности от времени у HTO постоянная, а у 
3
Н-тимидина 

линейно меняется со временем. При этом при оценке «остаточной» 

поглощенной дозы ядром клетки учитывается двухкомпонентная 

экспоненциальная аппроксимация процесса репарации. 

Поглощенная доза ядром МСК на один распад (S-значение) трития 

непосредственно в ядре (1,38 мГр) и цитоплазме (0,065 мГр) определяется в 

соответствии методикой, изложенной в главе 2. Диаметр ядер и клеток МСК 

составляет соответственно в 10 и 18 мкм. 

Анализ количества радиационно-индуцированных фокусов γН2АХ, 

53BP1, pATM проводился в ядрах МСК, инкубированных с 
3
H-тимидином и 

HTO в течение 24 ч. Полученные зависимости хорошо описываются 

линейным приближением 𝑦 = 𝑏 + 𝑎𝑥, где у – количество фокусов в 

клеточном ядре, а х – объемная радиоактивность (МБк/л) или поглощенная 

доза ядром клетки (Гр и мГр).  

Комплексное представление среднего количества фокусов γН2АХ, 

53BP1 и  pATM при инкубации с 
3
H-тимидином и HTO показано на рисунке 

1, соответствующие коэффициенты линейной зависимости от активности в 

среде в таблице 2. На рисунках 2 и 3 представлено изменение среднего 

количества фокусов γН2АХ, 53BP1 и  pATM в зависимости от поглощенной 

дозы ядром МСК за 24 ч и от «остаточной» дозы (в скобках) при инкубации с 

3
H-тимидином и HTO, а коэффициенты в таблицах 3 и 4. 
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Рисунок 1 – Количество фокусов в ядрах МСК от радиоактивности в среде с 

3
H-тимидином и HTO 

Таблица 2 – Коэффициенты линейной зависимости количества фокусов от 

радиоактивности в среде (МБк/л) с 
3
H-тимидином и HTO 

Фокусы 

3
Н-тимидин HTO 

a b a b 

γH2AX 0,049 2,4 0,0087 3,9 

53ВР1 0,044 2,0 0,0071 2,3 

рАТМ 0,037 1,0 0,0014 1,0 
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Рисунок 2 – Количество фокусов в ядрах МСК от поглощенной дозы ядром 

МСК за 24 ч при инкубации с 
3
H-тимидином 

Таблица 3 – Коэффициенты линейной зависимости количества фокусов от 

поглощенной дозы ядром (Гр) МСК за 24 ч при инкубации с 
3
H-тимидином 

Фокусы 
Доза за 24 ч Доза «остаточная» 

a b a b 

γH2AX 10,4 2,4 64,1 2,4 

53ВР1 9,3 2,0 57,6 2,0 

рАТМ 7,8 1,0 48,3 1,0 
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Рисунок 3 – Количество фокусов в ядрах МСК от поглощенной дозы ядром 

МСК за 24 ч при инкубации с HTO 

Таблица 4 – Коэффициенты линейной зависимости количества фокусов от 

поглощенной дозы (Гр) ядром МСК за 24 ч при инкубации с HTO 

Фокусы 
Доза за 24 ч Доза «остаточная» 

a b a b 

γH2AX 165 3,7 1662 3,9 

53ВР1 132 2,2 1365 2,3 

рАТМ 24 1,0 263 1,0 

Полученные результаты позволяют прийти к заключению, что в 

диапазоне удельных радиоактивностей 100-400 МБк/л количественный 

выход фокусов γH2AX, 53BP1, pATM соответственно в 5,6; 6,2; 26,4 раза 

выше при воздействии 
3
H-тимидина, чем при воздействии HTO. 

Поглощенные дозы от 
3
H-тимидина превышают в 80 раз дозы от HTO при 

инкубации клеток с одинаковой удельной радиоактивностью в течение 24 ч, 

что обусловлено более высокой в 180 раз активностью 
3
H-тимидина в ядрах 

клеток, по сравнению с HTO по итогам 24 ч инкубации в среде. 

Поглощенные «остаточные» дозы от 
3
H-тимидина превышают в 150 раз 

«остаточные» дозы от HTO при тех же условиях. 
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Результаты исследований с MRC-5 

С целью сравнительного анализа повреждений ДНК было проведено 

исследование по определению количества фокусов γH2AX, в ядрах 

фибробластов легкого человека (MRC-5), инкубированных с 
3
Н-тимидином и 

3
Н-аминокислотами. Эксперименты по сравнительному количественному 

анализу фокусов γH2AX, как маркеров ДР ДНК, в клетках MRC-5 при 24 ч 

инкубации как с 
3
H-тимидином, так и с тритированными аминокислотами 

(
3
Н-глицином, 

3
Н-аланином, 

3
Н-пролином) с различной удельной 

радиоактивностью, позволили установить, что зависимость количества 

фокусов γH2AX от радиоактивности в культуральной среде описывается 

линейными уравнениями. После 24 ч облучения в диапазоне от 100 до 400 

МБк/л наблюдается увеличение количества фокусов γH2AX у всех 

соединений. Зависимости «активность-эффект» хорошо  аппроксимируются 

линейными уравнениями, где y – количество фокусов, x – радиоактивность в 

МБк/л. На рисунке 4 представлены количественные данные фокусов γH2AX 

в клеточном ядре в зависимости объемной радиоактивности 
3
Н-тимидина и 

3
Н-аминокислот, а коэффициенты линейной зависимости в таблице 5. 

 

Рисунок 4 – Количество фокусов γH2AX в клетках MRC-5 в зависимости 

объемной радиоактивности 
3
Н-тимидина и 

3
Н-аминокислот  
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Таблица 5 – Коэффициенты линейной зависимости у фокусов γH2AX от 

радиоактивности в среде (МБк/л) 

3
Н-тимидин 

3
Н-аланин 

3
Н-глицин 

3
Н-пролин 

a b a b a b a b 

0,059 5,3 0,029 4,5 0,025 5,1 0,022 4,4 

Сравнение линейных угловых коэффициентов  с помощью Z-теста 

показало статистически достоверные различия между количественным 

выходом ДР ДНК в клетках при инкубации их в среде, содержащей 
3
Н-

тимидин или меченные тритием -глицин, -аланин, -пролин (p<0.001, z = 4.5, 

4.47, 5.66, соответственно). В целом, в пересчете на единицу удельной 

радиоактивности 
3
Н-тимидин вызывает более чем в 2 раза большее 

количество фокусов ДР ДНК, чем меченые тритием аминокислоты. 

С целью сравнения эффектов в ядрах клеток проводился анализ 

молекулярного состава хроматина. Количественный состав аминокислот 

гистонов H1, Н2А, Н2В, НЗ, Н4 и негистонового белка HMGB рассчитывался 

с использованием открытых баз данных состава белков Национального 

центра биотехнологической информации США и UniProt. 

Наш анализ количества фокусов γH2AX, в ядрах фибробластов легкого 

человека (MRC-5) при воздействии 
3
Н-аминокислот показал, что наибольшее 

количество ДР ДНК формируется в тех клеточных культурах, которые 

инкубировались в среде с добавлением 
3
Н-аланина, среднее с 

3
Н-глицином, 

наименьшее количество с 
3
Н-пролином. Эти экспериментальные данные 

подтверждаются оценками сравнения количественного аминокислотного 

состава белков хроматина: аланин (11,1%), глицин (8,0%) и пролин (4,1%). 

Поэтому можно предположить, что клеточные эффекты действия 
3
Н-

аминокислот зависят от количества их немеченых гомологов в составе в 

хроматина. 
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4.2 Результаты радиобиологических экспериментов на крысах in vivo 

С целью определения степени воздействия на клетки тканей органов 

млекопитающих при хроническом потреблении тритированных соединений 

проводились  радиобиологические эксперименты in vivo на крысах в течение 

28-30 дней при ежедневном приеме  НТО и 
3
Н-тимидина в растворе питьевой 

воды. При хроническом поступлении с питьем НТО и 
3
Н-тимидина с 

небольшой объемной активностью 200 кБк/л в организм крыс были 

получены следующие оценки и результаты измерений: 

 оценки радиоактивности в органах и биологических жидкостях 

организма крыс; 

 значения количества фокусов репарации ДР ДНК γН2АХ в 

спленоцитах крыс; 

 значения ПХЭ костного мозга с микроядрами. 

Расчетные значения доз в тканях органов в предположении о 

равномерном распределении трития очень малы (суммарно 150-300 мкГр за 4 

недели). Оценка дозиметрии в случае слабой радиоактивности трития не 

может быть проведена с учетом применяемых дозиметрических методов, так 

как тритий будет содержаться в относительно небольшом проценте клеток. 

Фактически, в пораженных клетках за исследуемый период произойдет 

только один распад трития, и по нашим оценкам значения доз в ядрах 

отдельных клеток  не будут превышать 5 мГр. 

Проводился подсчет количества фокусов γН2АХ в клетках селезенки 

крыс каждой группы HTO, 
3
H-тимидин, контроль. Относительное число 

клеток с фокусами составило соответственно в каждой группе  0,06, 0,11 и 

0,04, а соответственное количество фокусов на одну клетку было 0,16±0,01, 

0,27±0,01 и 0,09±0,01. 

В экспериментах in vivo на крысах при анализе фокусов репарации ДР 

ДНК γH2AX в клетках селезенки установлено увеличение их количества 

относительно контроля, как при воздействии НТО, так и при воздействии 
3
Н-

тимидина. Более выраженное повреждающее действие на образование ДР 

ДНК оказывает 
3
Н-тимидин, чем НТО. Отмечается только небольшое число 
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пораженных тритием клеток по сравнению с общим количеством 

спленоцитов. 

Цитогенетический эффект соединений трития рассматривался у крыс 

при пероральном приеме растворов с 
3
Н-тимидином и НТО.  Анализ частоты 

ПХЭ с микроядрами представлен в таблице 6. 

Таблица 6 – Генотоксические эффекты ПХЭ костного мозга крыс при приеме 

питьевой воды содержащей HTO и 
3
H-тимидин с активностью 200 кБк/л и  

800 кБк/л в сутки 

Группа 

Эффект   M±σ** 

Частота ПХЭ с микроядрами 

на 1000 ПХЭ 

Доля ПХЭ от суммы всех 

эритроцитов 

200 кБк/л 800 кБк/л 200 кБк/л 800 кБк/л 

HTO 5,8±1,1 6,5±1,2 0,35±0,02 0,44±0,02 

3
H-тимидин 5,2±1,4 9,0±1,6* 0,39±0,02 0,47±0,03 

Контроль 4,5±1,2 4,2±0,8 0,35±0,04 0,45±0,03 

* Отличие от контрольной группы по критерию χ
2
 статистически значимо 

при P≤0,05 

** M±σ – средняя арифметическая ± стандартное отклонение 

Различия по критерию χ
2 

между контрольной и экспериментальными 

группами, а также экспериментальными группами между собой 

статистически незначимы при активности питьевой воды 200 кБк/л, а при 

активности 800 кБк/л статистическая значимость выявлена  только между 

контрольной и экспериментальной группой с 
3
H-тимидином. 

В обсуждении отмечаются основные результаты экспериментов и 

предположения об их молекулярных механизмах. В ходе проведенных нами 

исследований были получены новые данные об особенностях формирования 

отклика культивируемых МСК и MRC-5 человека, а также спленоцитов и 

ПХЭ костного мозга органов крыс, на воздействие бета-излучения трития. 

Подтверждается низкий эффект от воздействия трития в неорганической 
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форме (HTO) и значительно более высокое воздействие от ОСТ, что 

объясняется активным включением различных видов ОСТ в ядра и 

цитоплазму клеток. Представлено сравнение коэффициентов линейной 

аппроксимации количества фокусов в зависимости от поглощенной дозы 

ядром МСК при инкубации с 
3
Н-тимидином и HTO с соответствующими 

коэффициентами при облучении фотонами в том же диапазоне доз. 

Отмечается некорректность линейной аппроксимации данных на уровне 

низких доз (1-20 мГр) при экстраполяции значений количества фокусов на 

более высокие диапазоны доз (свыше 0,1 Гр). В области сверхмалых доз (до 

10 мГр) от внутреннего облучения радионуклидом трития при HTO 

наблюдаются отличные от воздействия 
3
Н-тимидина процессы репарации.  

В заключении диссертации изложены итоги выполненного 

исследования, рекомендации и перспективы дальнейшей разработки темы, а 

также выводы о проделанной работе: 

1. Установлена линейная зависимость между количеством фокусов белков 

репарации  ДНК и радиоактивностью трития в культуральной среде (100-

400 МБк/л) в несинхронизированных МСК (γH2AX > 53BP1 > pATM) и 

популяциях фибробластов легкого человека MRC-5 (γH2AX). 

2. Расчет поглощенной дозы ядрами МСК показал превышение дозы от 
3
Н-

тимидина в 80-150 раз по отношению к HTO, что объясняет большую 

разницу в количестве фокусов у этих соединений в 5,6 (γH2AX), 6,2 

(53BP1) и 26,4 (pATM).  

3. Установлена зависимость «доза-эффект» в МСК для фокусов белков 

репарации ДНК без учета репарации («полная» доза за 24 ч: 6-24 мГр 

HTO, 0,38-1,90 Гр 
3
Н-тимидин), а также с учетом времени репарации 

(«остаточная» доза: 0,4-2,0 мГр HTO, 0,06-0,31 Гр 
3
Н-тимидин). 

4. Выявлено низкое количество pATM по отношению к γH2AX (20%) и 

53BP1 (30%) при инкубации с HTO, что объясняется слабым 

фосфорилированием белка-трансдуктора ATM при поглощенных дозах 

ядрами МСК в пределах до 10 мГр. 
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5. В фибробластах легкого человека MRC-5 при инкубации в течение 24 ч  

3
Н-тимидин вызывает в 2 раза большее количество фокусов γH2AX, чем 

3
Н-аминокислоты, а у 

3
Н-аланина на 30% больше по сравнению  с  

3
Н-

пролином. 

6. Эксперименты с крысами, потребляющих питьевую воду с 
3
H-тимидином 

и HTO с объемной активностью 200 кБк/л в течение 28 дней, 

свидетельствуют о слабых эффектах образования фокусов γH2AX (
3
H-

тимидин – 0,27±0,01, HTO – 0,16±0,01 контроль – 0,09±0,01 фокусов на 

клетку) в спленоцитах селезенки крыс и микроядер в 

полихроматофильных эритроцитах  костного мозга (частота 5,2±1,4, 

5,8±1,1, 4,5±1,2 на 1000 клеток соответственно). 
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